Estimation of block sparsity in compressive sensing

نویسندگان

  • Zhiyong Zhou
  • Jun Yu
چکیده

Explicitly using the block structure of the unknown signal can achieve better recovery performance in compressive censing. An unknown signal with block structure can be accurately recovered from underdetermined linear measurements provided that it is sufficiently block sparse. However, in practice, the block sparsity level is typically unknown. In this paper, we consider a soft measure of block sparsity, kα(x) = (‖x‖2,α/‖x‖2,1) α 1−α , α ∈ [0,∞] and propose a procedure to estimate it by using multivariate isotropic symmetric α-stable random projections without sparsity or block sparsity assumptions. The limiting distribution of the estimator is given. Some simulations are conducted to illustrate our theoretical results. Index Terms Block sparsity; Multivariate isotropic symmetric α-stable distribution; Compressive sensing; Characteristic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Nearly Linear-Time Model-Based Compressive Sensing

Compressive sensing is a method for recording a k-sparse signal x ∈ R with (possibly noisy) linear measurements of the form y = Ax, where A ∈ Rm×n describes the measurement process. Seminal results in compressive sensing show that it is possible to recover the signal x from m = O(k log n k ) measurements and that this is tight. The model-based compressive sensing framework overcomes this lower ...

متن کامل

Spatially correlated channel estimation based on block iterative support detection for large-scale MIMO

Downlink channel estimation with low pilot overhead is an important and challenging problem in large-scale MIMO systems due to the substantially increased MIMO channel dimension. In this letter, we propose a block iterative support detection (block-ISD) based algorithm for downlink channel estimation to reduce the pilot overhead, which is achieved by fully exploiting the block sparsity inherent...

متن کامل

Compressive Estimation of Cluster-sparse Channels

Cluster-sparse multipath channels, i.e., non-zero taps occurring in clusters, exist frequently in many communication systems, e.g., underwater acoustic (UWA), ultra-wide band (UWB), and multiple-antenna communication systems. Conventional sparse channel estimation methods often ignore the additional structure in the problem formulation. In this paper, we propose an improved compressive channel ...

متن کامل

Power Allocation and Measurement Matrix Design for Block CS-Based Distributed MIMO Radars

—Multiple-input multiple-output (MIMO) radars offer higher resolution, better target detection, and more accurate target parameter estimation. Due to the sparsity of the targets in space-velocity domain, we can exploit Compressive Sensing (CS) to improve the performance of MIMO radars when the sampling rate is much less than the Nyquist rate. In distributed MIMO radars, block CS methods can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.01055  شماره 

صفحات  -

تاریخ انتشار 2017